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Antibiotic C-1027, isolated from the broth filtrate of Strepromyces globisporus C-1027, is a new member
of the chromoprotein antitumor antibiotics composed of an unstable enediyne chromophore and a carrier
apoprotein.2  Although the structures of C-1027 chromophore and its cycloaromatized product were
elucidated,3 the stereochemistry has been determined only for the aminosugar moiety.4 Not only the absolute
but the relative configuration of the core and macrolide moieties has not been revealed except for the trans
relationship between C8 and C9.3 In this communication we determined the stereostructures of C-1027
chromophore and the aromatized product to be 1 and 2, respectively, by utilizing the modified Mosher's, two-
dimensional (2D) NMR, and molecular modeling methods.5

Since the apoprotein-free C-1027 chromophore (1) is too labile, more stable 2 was used throughout this
study. Attempts to derivatize 2 to a crystalline compound adequate for X-ray crystallography were
unsuccessful. Therefore, we applied the modified Mosher's method® to determine the absolute configurations
of C13 and C18. Chemical shift difference (A3) of each proton between (S) and (R)-MTPA derivatives (3, 4)
listed in Figure 1 shows that the configurations of C18 and C13 are S and R, respectively. On the other hand,
the 2D ROESY spectrum of 2 in DMSO-de showed strong NOE between HS and H13, but not between H3 and
H13. The macrolide 2 is a fairly rigid molecule because it consists of two aromatic rings. Therefore, this NOE
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strongly suggests that the configuration of C8 would be R (5) but not S (6) (Figure 2). Additional strong
NOEs between H12 and the C23 phenol proton and between H18 and H24 clearly indicate that rotation of the
benzene ring of the B-tyrosine moiety would be inhibited or restricted considerably, and that only the
stereostructure of diastereomer 5 is in good agreement with those NOE data (Figure 2). Large chemical shift
differences (a8) for H20 of 3 and H3 of 4 (Figure 1) suggest that those protons are located in close proximity
to the MTPA groups, which would also support the structure S.

Thus, both configurations of C8 and C9 should be concluded to be R. This assignment was further
supported by the intermolecular NOEs in a complex of 2 and apoprotein. An 8.6 mM solution of 2 and
apoprotein in 10% D20/90% H>0 or 99.8% D,0 was adjusted to pH 5.0 with 0.3 M NaOD and 2D NMR
measurements (COSY, HOHAHA, and NOESY, 30°C, Bruker AM 600)7 was carried out for this complex (Ka
= 1.5 x 104 M1 by fluorescence quenching titration®). A total of 90% of the proton resonances of the
apoprotein have been assigned by using the standard sequential assignment technique.”% Complete assignment
of the aromatized chromophore resonances and NOEs observed in the complex are listed in Table 1. Computer
modeling of three-dimensional (3D) binding structure using a distance constraints based on the NOE data and a
calculated apoprotein structurel0 was examined for the two possible isomers, 5 and 6. Only 5 exhibited a
reasonable binding structure without violation of the NOE distance constraints (Figure 3). However, no
binding structure within the NOE bounds was able to be built for 6.
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Figure 1. A8 Values [(8s- 8R) in hertz (600 MHz)] of MTPA amide (3) and MTPA ester (4).
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Figure 2. Stereostructures of the two possible stereoisomers, (5) [8R,9R] and (6) [85,95], for the
aromatized chromophore.
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Table 1. NOEs Observed in the Complex of 2 with Apoprotein (pH 5.0, 30°C).

8 (ppm)®  Intramolecular NOEs Intermolecular NOEs

Core H3 6.98 H12(++)b; H14-1(++)C; H14-2(+)° Tyr32 C81,2H(+)b

H5 7.02 H6(+++); H13(+++)

H6 7.31 HS5(+++); H8(+++); H13(+) Asn97 CoH(%)

H8 5.67 H6(++); HI'(++)

H10 6.55 H8(+); HI'(2)

H11 6.74 H12(+++); HI'(¥)

H12 6.40 H3(++); H11(+++); HI'(%)

H13 5.80 H5(+++); H6(+); H14-1(+)°; H14-2(++)° Ite33 CaH(+); Ala34 NH(+)

H14-1¢ 427 H3(++); H13(+)

H14-2¢ 4.46 H3(+); H13(+)

H17-1¢ 2.57 H18(+); H20(++); H24(+)

H17-2¢ 276 H18(+); H24(+)

Hig 4.33 H17-1(++)%; H17-2(++)C; H24(+++)

H20 6.95 HI17-1(++)C; H18(+)

H24 6.28 H17-1(+)¢; H17-2(+)°; H18(++++)
Aminosugar HI' 3.90 HB8(++); H10(%); H2'(+); 6'-CH3o(++); H8"(+)

H2 2.30 HI'(+); H3'(++4) Tyr32 Cel,2H(+)

H3' 3.68 H2'(+++4); HA'(++++)

H4' 2.58 H3'(++++); 6-CH3p(+++++) Tyr32 Cel,2H(++)

4-N(CH3); 2.60 6'-CHao(+++)
6'-CHia 0.65 H1'(+++); 4-N(CH3)2(+++)
6'-CH38 0.92 H4'(++++)

Benzoxazine 1"-NH 10.21 Tyr32 CB-2H(+)¢; Tyr32 C81,2H(t)
H6" 7.25
7"-OCH3 3.48 HE"(+++++) Pro76 CB-1H(++)%; Pro76 CB-2H(++)°
H8" 7.11 H13(+); H1'(+); 7"-OCH3(+++++) Cys45 CB-1H(++); Pro76 CoH(++);

Pro76 CB-1H(+)%; Pro76 CB-2H(++)¢
H11"-1¢ 532 HI1"-2(+++4)¢
H11"-2¢ 558 HIT"-1(++++)¢

2 Referred to the water resonance at 4.71 ppm. P Relative intensities indicated in parenthesis. € Higher and lower-field resonances
of diastereotopic protons indicated as -1 and -2, respectively.

Figure 3. The NOE-restrained refined binding-structure of § (2) with apoprotein.
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In summary, we have assigned the configuration of C-1027 chromophore 1 to be 8R, 9R, 13R, 18S.

Noteworthy is that the C13 configuration is identical with that of the corresponding stereogenic center of
kedarcidin chromophore!! and is opposite to that of neocarzinostatin chromophore.12 This disagreement may
suggest a different biosynthetic origin of the C13 oxygen between the nine-membered enediyne (1 and
kedarcidin) and the epoxydiyne chromophore (neocarzinostatin).!3
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